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Abstract: The combination of low inflation and low interest rates poses challenges for macroeconomic 

analysis: Inflation in the euro area (EA) has remained markedly below the ECB's price stability target. 

Yet, measures of economic slack indicate that economy operated at its potential before the pandemic 

shock. Using a standard New-Keynesian model, we show under which conditions such decoupling of 

the output gap and inflation can arise. Our focus is on a secular stagnation environment, characterised 

by a long-lasting liquidity trap and persistent demand shocks. To solve the model with a secular zero 

lower bound, we provide a new solution algorithm. 
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Introduction 

Since around 2014, the euro area (EA) is recovering from the financial and sovereign debt 

crisis. Standard estimates of the output gap point towards a closing between 2017, and 181. 

However, core inflation remains low and fluctuates narrowly around 1%. The discussion on 

low inflation started around 2014. With signs of a recovery in the EA becoming stronger, it 

was noticed that standard inflation forecasting models over-predicted inflation and also 

inflation expectations remained subdued (see Conti et al. (2014) and Landau (2014)). The 

phenomenon that inflation stays low despite an ongoing recovery has been labelled the 

“missing inflation puzzle” (Constânzio, 2015). Recent work by the ECB has systematically 

explored various explanations based on Phillips curve regressions. Bobeica and Sokol (2019) 

look at various alternative demand indicators, measures of inflation expectations and indicators 

of (foreign) supply shocks and conclude that there is robust evidence in favour of an over-

prediction of core inflation based on 550 alternative Phillips curve specifications. Moretti et al. 

(2019) extend the analysis to non-linear Phillips curves and systematically test for the presence 

of changes in the slope of the Phillips curve. Neither do they find lower slope coefficients in 

recent samples nor significant coefficients for non-linear terms in the Phillips curve. They also 

consider the standard set of explanatory variables and find that inflation expectations are 

important for predicting low inflation. 

An analysis of the decoupling between economic activity and inflation based on  Phillips curve 

regressions misses the interaction between aggregate supply and aggregate demand. In 

addition, it does not consider the changed monetary policy environment i.e. both inflation 

expectations and measures of economic slack are not exogenous variables. This paper therefore 

goes beyond single Phillips curve regressions and asks under which conditions the new-

Keynesian (NK) model can generate decoupling between the output gap and inflation. In 

particular, we explore a change in trend inflation, due to persistent demand shocks, which lower 

the riskless rate persistently to levels, which constrains monetary policy at the zero lower bound 

for a longer period.  

                                                           
1 The German Council of Economic Advisors (SVR, 2019) compared output gap estimates of international 

organisations (based on a production function (PF) methodology) with output gap estimates using an HP-Filter, a 

Hamilton Filter and a factor model for several large EA member states. All estimates point towards a closing of 

the output gap. 
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A declining trend of the riskless interest rate plays an important role in the debate about secular 

stagnation (see Summers, 2016, Rachel and Smith, 2017). Proponents of the secular stagnation 

hypothesis relate this phenomenon mostly to high savings rates, e.g. due to anticipated 

demographic pressures and flight to safety behaviour. The latter may have pushed down real 

rates further in the 2009/12 double dip recession.  Thus the EA could have entered a ‘low for 

long’ interest rate environment with constrained nominal rates for a number of years if not 

decades similar to Japan, which is in such a situation already for about 20 years.  

The relationship between inflation and the output gap at the zero lower bound has been studied 

intensively (see Lubik and Schorfheide (2003) and Cochrane (2017). In this paper, we want to 

add to this discussion by looking at a more persistent demand shock and explore a small set of 

equilibria besides the standard full rational expectations (RE) equilibrium and the no inflation 

jump equilibrium advocated by Cochrane. As emphasised by Cochrane, ‘equilibrium selection 

can be an empirical project as well as a theoretical one’, and we find that both equilibria do not 

fit the stylised facts about output gap and inflation very well. We also go beyond the existing 

literature and look at the robustness of results by comparing output gap-inflation nexus with a 

standard forward-looking Phillips curve and a hybrid Phillips curve in an NK model. 

This paper is structured as follows. Section 1 presents some empirical evidence about the output 

gap and core inflation in the EA, documenting the degree in which there has been a decoupling 

in recent years. Section 2 presents the simple NK model and analyses the link between inflation 

and the output gap with persistent demand shocks with different assumptions about the degree 

in which inflation expectations are forward-looking in the Phillips curve. Section 3 extends the 

analysis to the ZLB regime and presents our solution algorithm.  

 

1. Empirical evidence: 

This section provides some evidence about output gap estimates and the evolution of core 

inflation. As can be seen from Figure 1.1, after the 2009 financial crisis, the EA economy 

exhibited a negative output gap for nearly 10 years. This episode is accompanied by low (core) 

inflation which does not show signs of increasing despite the evidence on the recent closing of 

the output gap. 
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Figure 1.1: CAM output gap versus PCA and DSGE estimates for the EA (2000-2018)  

 
Notes: The PCA output gap is calculated using only the first component and rescaled to the standard deviation of 

the Commonly Agreed Methodology output gap. The DSGE output gap is based on the model-based production 

function. The vertical axis shows the output gap in percent. 

 

Figure 1.2: Core inflation 

 
Notes: Blue line: Annual rate of change of the Harmonised Index of Consumer Prices (HICP) excluding energy, 

food, alcohol and tobacco (EA 19). Source: Eurostat (prc_hicp_manr TOT_X_NRG_FOOD). The red line 

indicates the two percent annual inflation. 
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The inflation puzzle can also be seen by comparing movements of the unemployment rate with 

inflation as shown inn Figure 1.3. 

Figure 1.3: Unemployment  and HICP inflation 

Annual percentage  change (right hand scale), percentages (left hand scale, inverted) 

Source: Bobeika and Sokol (2019) 

Another way to look at the inflation puzzle is to look at predictions based on Phillips curves 

Figure 1.4: Phillips curve based decomposition of inflation 

Annual percentage changes and percentage point contributions; all values in terms of 

deviations from their averages since 1999 

Source: Bobeika and Sokol (2019) 
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The current situation differs from previous downturns and recoveries by the fact that the 

nominal interest rate is stuck at the ZLB. In our view, constrained monetary policy reflects both 

the severity of the financial and sovereign debt crisis in the EA (see Kollmann et al. (2016) for 

an identification of these shocks ) but also coincides with a secular savings trend which has 

resulted in negative risk-free rates in the EA since the beginning of 2015 (see Figure 1.5). A 

major hypothesis underlying our analysis in this paper is that this trend will not reverse and 

interest rates will stay low for a number of years if not decades. 

Figure 1.5: Real 10 year  government bond yields 

 

Source: Bruegel 
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2. New Keynesian model 

To keep the analysis analytically tractable, we use the simplest New Keynesian workhorse 

model. We follow Clarida et al. (1999)2 and consider an aggregate demand equation and a price 

equation (New Keynesian Phillips curve). Since we are interested in the dynamic effects of 

demand shocks, we abstract from supply shocks. Thus, under flexible prices, our economy 

would always produce at a constant level of output 𝑦𝑠𝑠 and we define the output gap as the 

difference between actual output and its steady state 𝑦𝑠𝑠. We also assume that in normal times, 

the CB adheres to an inflation target 𝜋̅  and the model explains deviations of inflation from the 

target. In the ZLB regime, inflation will still be expressed as deviation from the inflation target. 

All variables are expressed as deviation from their steady state level.  

𝑦𝑡 = (𝑦𝑡
𝐿 − 𝑦𝑠𝑠)      (1) 

𝜋𝑡 = 𝜋𝑡
𝐿 − 𝜋𝑠𝑠      (2) 

𝑖𝑡 = 𝑖𝑡
𝐿 − 𝑖𝑠𝑠      (3) 

Variables with superscript L denote original (log) levels. The steady state is calculated for the 

model with the Taylor rule imposed (𝜋𝑠𝑠 = 𝜋̅ ,  𝑖𝑠𝑠 = 𝜌 + 𝜋̅). 

The simplest NK model represents the economy by an aggregate demand schedule, which 

relates the expected change of the output gap to the expected real interest and the rate of time 

preference. The rate of time preference can be subject to shocks, which we will denote demand 

shocks. The second relationship is a Phillips curve, which expresses the deviation of current 

inflation from the target as a positive function of the output gap and expected future inflation. 

We allow for the presence of a hybrid Phillips curve. Because this is an empirically important 

case and we will show that the relationship between inflation and the output gap depends 

crucially on the relative importance of the lead and lagged inflation variable in the Phillips 

curve.  Concerning monetary policy, we assume that the central bank (CB) sets the policy rate 

in each period as a function of the real rate and inflation target and responds aggressively (with 

𝜏 > 1) to any deviation of inflation from the target. As shown in Clarida et al. (1999), it is 

optimal for the CB to lower interest rates directly as a response to the negative demand shock. 

Monetary policy is subject to a ZLB constraint.  

𝑦𝑡,𝑡+1 = 𝜎(𝑖𝑡 − 𝜋𝑡,𝑡+1 + 𝑠𝑡) + 𝑦𝑡    (4) 

                                                           
2 See for example Woodford (1996) for a detailed derivation of the aggregate demand and supply equation.   
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𝜋𝑡 = 𝑠
𝑓𝛽𝜋𝑡,𝑡+1 + (1 − 𝑠

𝑓)𝜋𝑡−1 + 𝛾𝑦𝑡   (5) 

𝑖𝑡 = 𝑀𝑎𝑥(−(𝜌 + 𝜋̅), 𝜏𝜋𝑡)       (6) 

Shock assumption:    𝑠𝑡 = 𝜌
𝑠𝑠𝑡−1 + 𝑒𝑡 > 0     (7) 

Parameters: 

 𝜌 = 0.01;   𝜎 = 1. ;   𝛾 = 0.125; 0 ≤ 𝑠𝑓 ≤ 1 𝜏 = 1.5; 𝑠𝑓 = (1 or 0.55); 𝜌𝑠 = 0.975 

In all our simulation experiments, we consider an annual frequency, with a rate of time 

preference of 1%, an interest elasticity of one, a slope of the Phillips curve equal to 0.125. The 

inflation coefficient in the Taylor rule is set to 1.5. We choose a persistence of the demand 

shock, implying a half-life of 25 years. The size of the savings shock is 2%. This allows the 

model to generate an adjustment path with a negative (risk-free) real interest rate in an order of 

magnitude as observed in the data. 

 

Output gap and inflation with a Taylor rule 

This model has a stable and determined solution if the Taylor principle holds. In this case, the 

transition matrix has two Eigenvalues larger than one, corresponding to two forward-looking 

variables 𝑦𝑡 and 𝜋𝑡.The solution under the Taylor rule is given by 

𝑦𝑡
𝑇𝑅 = 𝜃𝑦𝑠𝑡 =

1

𝜌𝑠−1+
(𝜌𝑠−𝜏)𝛾

1−𝛽𝜌𝑠

𝑠𝑡    (8) 

𝜋𝑡
𝑇𝑅 = 𝜃𝜋𝑠𝑡 =

−𝛾

1+𝛾𝜏−𝜌𝑠−𝜌𝑠𝛽−𝜌𝑠𝛾+𝛽𝜌𝑠
2 𝑠𝑡   (9) 

𝑖𝑡
𝑇𝑅 = 𝜏𝜃𝜋𝑠𝑡               (10) 

and shows the complete co-movement between the output gap and inflation.  

Since persistent demand shocks are non-standard, we first consider a white noise demand shock 

as a benchmark. For this shock, we see directly from equations (8) to (10) that the output gap 

will be negative and inflation will undershoot the target for one year. The percentage point 

(ppt) deviation of inflation from target is 𝛾 times the deviation of output from potential. As 

shown in Figure 2.1, output declines by about 1.5%, while inflation declines by close to 20Bp. 

A non-persistent demand shock of 2% does not violate the ZLB constraint.   
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Figure 2.1: Temporary Demand Shock -Forward-looking Phillips curve 

 

A persistent demand shock of the same size but unchanged monetary policy response has a 

different impact effect. 

Figure 2.2a: Forward-looking Phillips curve 
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Assuming that the ZLB does not constrain the Taylor rule, the CB lowers the policy rate by 

nearly 600Bp. This reaction limits the decline of GDP to -1%, but inflation declines by 350Bp. 

Both GDP and inflation recover at a low pace. The output gap is extremely persistent and does 

not close before 100 years. It takes inflation more than 100 years to reach the target. The 

nominal interest rate becomes negative.  

Why does the persistent demand shock have different effects on output and inflation than the 

temporary shock? Because of nominal frictions, firms adjust prices stronger to persistent 

shocks than to more temporary shocks.  

 

Figure 2.2:  Hybrid Phillips curve  

 

 

With a hybrid Phillips curve, the co-movement between inflation and the output gap becomes 

weaker. In particular, the output gap closes rapidly in the first five years but remains marginally 
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negative afterwards, while inflation is still low and approaches the inflation target very slowly.  

The output gap closes quickly after inflation picks up from a low level. This output gap inflation 

dynamics comes closer to the accelerationist view to which we turn next. 

Figure 2.3: Backward-looking Phillips curve 

 

The decoupling is more pronounced with a purely Backward-looking Phillips curve. Now the 

output gap becomes positive after inflation has reached a trough.  

This section has shown that in combination with demand shocks, co-movement between the 

output gap and inflation only occurs under the pure forward-looking Phillips curve, while more 

backward-looking variants can generate decoupling where the output gap closes before 

inflation is reaching the inflation target. However, these simulations fail to be consistent with 

the data on two points. First, in all three variants, the ZLB constraint is violated by a demand 

shock with this persistence and size and second the adjustment of inflation shows a strong 

upward trend after the initial trough, while observed core inflation remain persistently at a 

lower level. 
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3. Solution with a ZLB constraint 

With the ZLB constraint, the Taylor rule is not effective. Thus, the transition matrix has only 

one Eigenvalue larger than one for two jumping variables, yielding indeterminacy. We make 

the indeterminacy explicit by introducing expected inflation conditioned on t, 𝜋𝑡
𝑒 , i. e. by 

introducing a state variable (see Lubik and Schorfheide (2003) or Farmer and Khramov (2015)) 

and by linking inflation to expected inflation via a inflation forecasting error equation. Farmer 

and Khramov argue as follows: ‘the rationale for our procedure is based on the notion that 

agents situated in an environment with multiple rational expectations equilibria must still 

choose to act. And to act rationally, they must form some forecast of the future and, therefore, 

we can model the process of expectations formation by specifying how the forecast errors co-

vary with the other fundamentals’. Here we restrict the forecast error to be perfectly correlated 

with the demand shock (which is the only shock).  

𝜋𝑡
𝑒 = 𝜋𝑡,𝑡+1              (11) 

𝜋𝑡 = 𝜋𝑡−1
𝑒 − 𝜔(. )𝑒𝑡             (12) 

Equation (12) differs from characterising a fully rational forecast error by a free parameter 𝜔 

which is not constrained by underlying structural parameters of the model. However, we can 

determine the value of 𝜔 corresponding to the full RE solution. We restrict the analysis of 

solutions to cases characterised by different values of 𝜔, including the value implied by the 

full RE solution. Also Cochrane’s ‘no inflation jump’ solution is a special case with 𝜔 = 0. 

Now, the dynamic equations of the model can be rewritten in terms of 𝑦𝑡 and 𝜋𝑡
𝑒  

𝜋𝑡−1
𝑒 − 𝜔(. )𝑒𝑡 = 𝛽𝜋𝑡

𝑒 + 𝛾𝑦𝑡             (13) 

𝑦𝑡.𝑡+1 = (−(𝜌 + 𝜋̅) − 𝜋𝑡
𝑒 + 𝑠𝑡) + 𝑦𝑡             (14) 

This model has one predetermined variable and one non-predetermined (jumping) variable 

which is required by the determinacy condition.  

For this small model, we can find an analytical solution with an endogenous switch point under 

full rational expectations (i.e. no indeterminacy at the ZLB) and under indeterminacy. In the 

first case, the underlying structural parameters determine 𝜔(. ), while in the latter case 𝜔 

remains exogenous. For the model with a hybrid Phillips curve, which has a state variables 

under the Taylor rule (TR) regime, we resort to a numerical solution procedure (see Appendix 

A).  
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Full RE solution vs. multiple indeterminate solutions 

We now discuss differences between the two solutions using the simple NK model. 

The full RE solution and the solution under indeterminacy differ by how the Taylor rule is 

imposed after the ZLB period. Under the full RE solution the Taylor rule is immediately 

applied by the CB at 𝑡 + 𝑗 ̅, which requires that agents anticipate a shift in the policy regime 

from an exogenous constant nominal interest rate to a (Taylor) rule-based system which is 

strictly enforced starting in period 𝑡 + 𝑗 ̅

𝜋𝑡+𝑗̅−1
𝑒 = 𝜋𝑡+𝑗̅

𝑇𝑅                 (15) 

For the indeterminate solutions, we follow Cochrane and assume that the CB sticks to an ex-

ante defined (and announced) path for the interest rate after the ZLB regime. Here we assume 

that the path for the policy rate after the ZLB is conditional on 𝑠𝑡+𝑗̅+𝑘. More precisely we 

assume that the CB sets the nominal rate according to  

𝑖𝑡+𝑗̅+𝑘
𝑇𝑅 = 𝜏𝜃𝜋𝑠𝑡+𝑗̅+𝑘,       𝑘 = 0,1, … ..           (10’) 

This equation corresponds to the unconstrained solution for the nominal interest rate. Though 

this solution is consistent with the Taylor rule, eq. 10’ does not imply that agents anticipate that 

the CB will strictly apply the Taylor rule after 𝑡 + 𝑗. Eq 10’ only implies that the CB follows 

an interest rate rule contingent on 𝑠𝑡+𝑗̅+𝑘 (and not on the deviation of inflation from the target). 

The only constraint implied by 10’ is the prediction that the nominal interest rate will be set at 

the steady state level implied by the TR when 𝑠𝑡 goes to zero. Thus, eq, 10’ implies that the 

CB is not enforcing a short run inflation adjustment as implied by the Taylor but allows a 

smooth transition to the inflation target. The two alternative solutions have one thing in 

common, namely an identical path for the policy rate. For solving the NK model (without 

predetermined variables under the TR regime) and allowing for a switch point to the Taylor 

rule regime, we find it useful to apply a slightly modified Blanchard Kahn (1980) algorithm. 

Full RE solution: 

A first step is to transform the model into Jordan canonical form, with the two variables 𝑌𝑡−1 

and 𝑄𝑡, where 𝑌𝑡 is related to the eigenvalue smaller than one 𝜆1 and 𝑄𝑡  to the eigenvalue 

larger than one 𝜆2 . 𝑄𝑡 is a linear combination between 𝑦𝑡 and 𝜋𝑡−1
𝑒  ( see Kollmann and Zeugner, 

2018). We define   
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𝑄𝑡
𝑇 = 𝑦𝑡 − (

𝜆1−1/𝛽 

−𝛾/𝛽
)𝜋𝑡−1

𝑒                  (16) 

with the coefficient of 𝑦𝑡 normalised to one. Under the assumption that the economy remains 

in a zero nominal interest rate regime forever 𝑄𝑡
𝑇  has the following forward solution 

𝑄𝑡
𝑇 = [(

𝜆1−
1

𝛽

−
𝛾

𝛽

)(−
𝜔

𝛽
) −

𝜔

𝛽
] (

1

𝜆2
) 𝑒𝑡 + (

1

𝜆2
)∑ (

1

𝜆2
)
𝑖+1
(𝜌 + 𝜋̅) − (

1

𝜆2
)∑ (

1

𝜆2
)
𝑖+1
𝑠𝑡,𝑡+𝑖

∞
𝑖=0

∞
𝑖=0  (17) 

Except for boundedness, no specific restrictions are imposed on the exogenous variables on the 

RHS of eq.17. With an expected reversal to the active monetary policy regime in 𝑡 + 𝑗 ̅ , the 

solution for  𝑄𝑡
𝑇  takes the  following form 

𝑄𝑡
𝑇 = [(

𝜆1−
1

𝛽

−
𝛾

𝛽

) (−
𝜔

𝛽
) −

𝜔

𝛽
] (

1

𝜆2
) 𝑒𝑡 + (

1

𝜆2
)∑ (

1

𝜆2
)
𝑖
(𝜌 + 𝜋̅) − (

1

𝜆2
)∑ (

1

𝜆2
)
𝑖

𝑠𝑡,𝑡+𝑖
𝑗̅−1
𝑖=0

𝑗̅−1
𝑖=0 + (

1

𝜆2
)
𝑗̅

𝑄𝑡,𝑡+𝑗̅
𝑇𝑅,𝑍

    

                      (18) 

With the terminal condition 

𝑄𝑡,𝑡+𝑗̅
𝑇𝑅,𝑍 = 𝑦𝑡,𝑡+𝑗̅

𝑇𝑅 − (
𝜆1−1/𝛽 

−𝛾/𝛽
)𝜋𝑡,𝑡+𝑗̅

𝑇𝑅              (19) 

Thus, the forward variable  𝑄𝑡
𝑇  incorporates the expected switch in the monetary policy regime. 

Notice, at this point we take the switch point as given. Below we show how to determine the 

switch point endogenously. The state variable 𝜋𝑡
𝑒 can also be written as a function of 𝑄𝑡

𝑇 

(1 − 𝜆1𝐿)𝜋𝑡
𝑒 = −

𝜔

𝛽
𝑒𝑡 −

𝛾

𝛽
𝑄𝑡
𝑇              (20) 

Under the full rational expectations solution, agents perfectly foresee the exit from the ZLB 

regime and anticipate that the CB invokes the Taylor rule from date 𝑡 + 𝑗 ̅. Therefore, inflation 

expectation in the last period under ZLB, 𝑡 + 𝑗̅ − 1, takes into account that inflation will be 

determined by the Taylor rule in  𝑡 + 𝑗 ̅ 

𝜋𝑡+𝑗̅
𝑇𝑅 = 𝜋𝑡+𝑗̅−1

𝑒  

Combining the respective solutions of the inflations from the two regimes (eq. 9 and 20), yields 

 

𝜋𝑡+𝑗̅−1
𝑒 = −

𝜔

𝛽
𝑒𝑡𝜆1

𝑗̅−1
−
𝛾

𝛽
∑ 𝜆1

𝑗̅−1−𝑘
𝑄𝑡+𝑘

𝑗̅−1
𝑘=0 ,             (21) 

One can derive the following expression for the  𝜔 parameter: 
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1

𝜔
= −

1

𝜋𝑡+𝑗̅
𝑇𝑅 𝛽

𝑒𝑡𝜆1
𝑗̅−1

(

 
 
1 −

𝛾

𝛽

1

𝜆2
(
𝜆1 −

1
𝛽

−
𝛾
𝛽

+ 1)

)

 
 

−
𝛾

𝛽

(

 
 1

𝜆2 − 1
(𝜌 + 𝜋̅)

1 − 𝜆1
𝑗̅

1 − 𝜆1
−

𝜆1
𝑗̅−1

𝜆2 − 𝜌𝑠

1 − (
𝜌𝑠

𝜆1
)
𝑗̅

1 −
𝜌𝑠

𝜆1

𝑠𝑡

−
𝜌 + 𝜋̅

𝜆2 − 1

1

𝜆2 − 𝜆1
(1 − (

𝜆1
𝜆2
)
𝑗̅

)

)

 
 
−
𝛾

𝛽

(𝜌𝑠)𝑗̅

𝜆2 − 𝜌𝑠
1

𝜆2 − 𝜆1
(1 − (

𝜆1
𝜆2
)
𝑗̅

) 𝑠𝑡

−
𝛾

𝛽

1

𝜆2 − 𝜆1
(1 − (

𝜆1
𝜆2
)
𝑗̅

)𝑄𝑡+𝑗
𝑇𝑅,𝑍

 

                     (21) 

The full RE solution generates an initial jump of inflation and the output gap such that inflation 

expectations in the transition period between the ZLB and the TR regime are fully consistent. 

This consistency requirement eliminates indeterminacy. 

Solution with indeterminacy under the ZLB (𝜔 exogenous): 

With indeterminacy, agents anticipate an ex ante path for the policy rate beyond the ZLB 

regime, i.e. they anticipate a path for the nominal interest rate which is only determined by 

exogenous variables.  This yields the modified Q equation    

𝑄𝑡
𝑇 = [(

𝜆1−
1

𝛽

−
𝛾

𝛽

)(−
𝜔

𝛽
) −

𝜔

𝛽
] (

1

𝜆2
) 𝑒𝑡 − (

1

𝜆2
)∑ (

1

𝜆2
)
𝑖
𝑖𝑡,𝑡+𝑖
𝑒𝑥∞

𝑖=0 − (
1

𝜆2
)∑ (

1

𝜆2
)
𝑖
𝑠𝑡,𝑡+𝑖

∞
𝑖=0  (22) 

With  

𝑖𝑡,𝑡+𝑖
𝑒𝑥 = {

−(𝜌 + 𝜋̅)   𝑓𝑜𝑟 𝑗 < 𝑗̅

𝜏𝜃𝜋𝑠𝑡+𝑗   𝑓𝑜𝑟 𝑗 ≥ 𝑗̅
 

The dynamic equation for 𝜋𝑡
𝑒  remains unaffected. 
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How to determine 𝑗?̅ 

Economic agents anticipate that the CB will invoke the Taylor rule at date  𝑡 + 𝑗 ̅. This date is 

characterised by a state of demand 𝑠𝑡+𝑗̅, such that the policy rate can be set marginally above 

zero ( 𝑖𝑡+𝑗̅
𝐿 ≥ 0)3. 

When monetary policy is unconstrained, there is a linear relationship between 𝑖𝑡+𝑗
𝑇𝑅  and 𝑠𝑡+𝑗 

(eq. 10),  and the Taylor rule yields an interest rate of zero when 

     𝑖𝑡+𝑗̅
𝑇𝑅 = −(𝜌 + 𝜋̅) = 𝜏𝜃𝜋𝑠𝑡+𝑗̅ = 𝜏𝜃

𝜋𝜌𝑗̅𝑠𝑡           (21) 

This equation can be solved for 𝑗 ̅

(𝑗)̅log (𝜌𝑠) = log (
−(𝜌+𝜋̅)

𝜏𝜃𝜋𝑠𝑡
)              (22) 

Following these steps provides an analytical solution for the NK model when there is a 

temporary ZLB constraint.  

In the following scenarios we assume that the natural rate of interest declines by 2% persistently 

(and turns negative). Similar to Werning and Cochrane , the CB is setting interest rates to zero 

until  𝑡 + 𝑗 ̅and then increases the interest rate gradually as the natural rate increases4. 

 

Replicating the full rational expectations solution  

Figure 3.1 shows the adjustment path of output, inflation and the nominal interest rate for a 

persistent demand shock. The value of 𝜔  implied by the smoothness condition is 1.9485e+06 

and implies a strong jump of output and inflation after agents learn about the persistent nature 

of the demand shock5. 

 

 

 

                                                           
3 We assume that between 𝑡 + 𝑗̅ − 1    and  𝑡 + 𝑗 ̅ starts to bind marginally such that 𝑖𝑡+𝑗̅

𝐿 ≥ 0.  

4 Werning and Cochrane consider a strong temporary reduction of the natural rate (5 periods). In contrast we 

consider a persistent decline which only recovers gradually. 
5 This solution is numerically identical to the OCCBIN solution.  
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Figure  3.1a:    Adjustment path under full RE solution-global 

 

 

Figure  3.1b:    Adjustment path under full RE solution-local 
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Under the full RE solution of a persistent negative demand shock with a ZLB, both the output 

gap and inflation become strongly negative and both drop by unrealistic magnitudes. The 

persistence of the demand shock implies that the economy is stuck at the ZLB for about 25 

years. Unlike in the economy without ZLB (see Figure 2.1) where the output gap was hardly 

affected, the constrained monetary policy cannot avoid a fall of output of a similar magnitude 

as inflation. Both drop excessively. Only a few periods before the transition to the Taylor 

regime is inflation moving to zero (2% below target) which is the rate at which the CB starts 

to apply the Taylor rule. Inflation approaches zero from below. 

The take away from this exercise is that quantitatively both the output gap and inflation move 

much closer together compared to the situation with unconstrained monetary policy. However, 

the magnitude of the response of both inflation and the output gap is unrealistically excessive.  

 

Adjustment with smooth inflation when the shock occurs (no inflation jump equilibrium) 

Cochrane (2017) advocated a solution, which constrains the jump of inflation to zero. In case 

of a temporary shock, we apply his equilibrium concept to the case of a persistent demand 

shock.  

Figure 3.2a:  Adjustment in the no inflation jump equilibrium (s=0.02, rhos=0.975) 
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A relatively small but persistent demand shock leads to deflation and a positive output gap.  

Given the size and duration of the negative demand shock, the CB sets nominal interest rates 

to zero, the lowest value attainable. However, since the smooth inflation adjustment condition 

constrains inflation, it only gradually declines. This effect lowers the real interest rate and 

temporarily boosts output. As inflation declines over time, the output gap closes from above. 

Imposing what Cochrane calls the ‘no inflation jump equilibrium’ leads to a strong decoupling 

between inflation and the output gap. The output gap remains positive throughout the ZLB 

episode, while inflation declines continuously towards zero, consistent with the expected 

inflation at the switch point to the Taylor rule regime.  

This adjustment path of output and inflation differs from the Cochrane solution, because our 

shock has a smaller size but is more persistent. Especially the initial size of the demand shock 

is important, increasing the size generates a stronger demand shortfall and reduces the output 

gap below zero. Similar to Cochrane, decoupling occurs in this case as well since inflation rises 

initially.   

Figure 3.2b:  Adjustment in the no inflation jump equilibrium (s=0.045, rhos=0.95) 
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Towards a more realistic adjustment path 

The problem with the no inflation jump solution (this applies even more to the stable backward 

solution proposed by Cochrane) is that it either does not replicate the low inflation episode in 

the EA since 2009, or the negative output gap.  

The no inflation jump equilibrium also does not seem plausible if we take into account that 

agents would use previous experiences (with unconstrained monetary policy) from which they 

can infer that inflation jumps downwards to a negative demand shock. Though initially agents 

may not be familiar with the new ZLB environment, it seems reasonable to assume that agents 

also expect a downward jump of inflation to such a demand shock. Based on this reasoning, 

we choose a value of 𝜔 > 0 which implies a downward jump of inflation. With 𝜔 = 1, the 

model can come closer to replicating inflation (see Figure 3.3). Now the model generates a 

negative output gap and decline of inflation. Initially there is co-movement. However, 

decoupling occurs after a few periods: The output gap closes, while inflation does not reach 

the target. Instead inflation starts to deviate again from the target and converges to zero 

inflation, which is the expected inflation at which the CB starts to invoke the Taylor rule after 

the negative demand shock has become sufficiently small. 

Short and medium-term dynamics can be distinguished. Initially, both output and inflation drop 

associated with an increase in the real interest rate. However, with inflation rising the real 

interest rate declines and the output gap closes. The output gap closure is also driven by the 

expectation of a turnaround in inflation. With sufficiently decelerating inflation, the output gap 

becomes (slightly) positive. The economic intuition for this is as follows. Producers, which 

expect inflation to decline (gradually) over time, will reduce prices/mark up already in the 

current period to avoid price adjustment costs. This generates demand and leads to a (small) 

positive output gap.    
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Figure 3.3: Adjustment with  𝝎 = 𝟏 

 

Using a numerical solution algorithm for the hybrid case yields the following similar 

adjustment dynamics. 

Figure 3.4: Adjustment with 𝝎 = 𝟏 (hybrid Philipps curve) 
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Conclusion 

The combination of low inflation and low interest rates poses challenges for macroeconomic 

analysis: Inflation in the euro area (EA) has remained markedly below the ECB's price stability 

target. Yet, measures of economic slack indicate that economy operated at its potential before 

the pandemic shock. Using a standard New-Keynesian model, we show under which conditions 

such decoupling of the output gap and inflation can arise. Our focus is on a secular stagnation 

environment, characterised by a long-lasting liquidity trap and persistent demand shocks.  

Besides the unique full RE solution we also allow for equilibria with self-fulfilling expectations 

which can arise under a ZLB regime. We find that both the full RE solution and the no inflation 

jump solution yield implausible results. Within the range of solutions offered by our 

parametrisation, we find an inflation forecast error process, which allows some initial response 

of inflation to a negative demand shock better matches the stylised facts of a decoupling 

between inflation and the output  gap. 

For the small NK model studied in this paper, we can provide a full analytical solution for the 

case in which the economy is temporary (but possibly over a long period) in a ZLB regime 

both for the full RE solution and all solutions characterised by exogenous choices of the 

forecast error equation. 

However, more work is needed to empirically estimate this model and to identify the driving 

shocks. We believe that extending the estimation to models which allow for indeterminacy will 

make it easier to identify persistent shocks. Currently estimated full RE models tend to identify 

a sequence of non-persistent demand shocks, since this is the only way to reconcile an interest 

rate stuck at the ZLB for a longer period of time without generating strong  negative inflation. 

Our analysis has also neglected supply shocks, in particular associated with a fall in the 

NAWRU which can be observed since 2013 in the Euro Area. This could could be an 

alternative explanation for low inflation.     
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ANNEX A NUMERICAL SOLUTION TO GENERAL 

PROBLEM with smooth transition 

We represent the baseline TR (linearised) rational expectation model in the ABC form: 

𝐴 𝑦𝑡+1 + 𝐵𝑦𝑡 + 𝐶𝑦𝑡−1 + 𝐽𝜀𝑡 = 0 

with solution 

𝑦𝑡 = 𝑇𝑦𝑡−1 + 𝑅𝜀𝑡 

Interest rate 𝑖𝑡 is an element of 𝑦𝑡 and we can apply the z-transform of the state space representation 

to express 𝑖𝑡 only as a function of exogenous shock(s) and its own lags: 

 𝑖𝑡
𝑇𝑅 = ∑

𝑏𝑗(𝐿)

𝑎(𝐿)
𝜀𝑡
𝑗 

𝑗          

where 𝑎(𝐿) 𝑏𝑗(𝐿) are polynomials in the lag operator L, and 𝑎(𝐿) is the characteristic polynomial of 

the TR rational expectation model. Note that for each exogenous shock there will be a different 

polynomial at the numerator. This transfer function or ARMA representation of interest rate versus 

exogenous shocks is extremely convenient to obtain the smooth transition path under the constrained 

regime, since it allows to evaluate the future interest rate path as a stand-alone process. 

To allow for smooth transition, the model is re-formulated by assuming interest rate being an 

exogenous process, following the path prescribed by the TF form (C.1), and where inflation becomes 

a backward looking variable in the expectation error form. Let define the model under constrained 

regime as the ‘star’ model: 

𝐴∗ 𝑦𝑡+1 + 𝐵
∗𝑦𝑡 + 𝐶

∗𝑦𝑡−1 + 𝐽𝜀𝑡 + 𝐾𝑖𝑡
∗ = 0 

where we augmented the shocks in the model by the exogenous variable, which follows the path 

𝑖𝑡+𝑗
∗ = max(−(𝜌 + 𝜋̅), 𝑖𝑡+𝑗

𝑇𝑅 ) for 𝑗 = 0,… ,∞ 

and where the Tylor rule is replaced by the expression 𝑖𝑡 = 𝑖𝑡
∗ in the ‘star’ model. Equation (C.1) also 

allows to determine 𝑗,̅ by checking periods where 𝑖𝑡+𝑗
𝑇𝑅 < −(𝜌 + 𝜋̅). 

The ‘star’ model has a unique saddle path solution given by: 

𝑦𝑡 = 𝑇
∗ 𝑦𝑡−1 + 𝑅

∗𝜀𝑡 + 𝑄𝑖𝑡
∗ 

Let us define a future time period 𝑗∞ above which 𝑖𝑡+𝑗∞+𝑠
∗ ~0 (𝑠 > 0), i.e. interest rate path 

prescribed by TR is back to equilibrium. Hence, for 𝑗∞+1 we can write 

𝑦𝑡+𝑗∞+1 = 𝑇
∗𝑦𝑡+𝑗∞  
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We can replace this in the ‘star’ model 

𝐴∗ 𝑇∗𝑦𝑡+𝑗∞ +𝐵
∗𝑦𝑡+𝑗∞ + 𝐶

∗𝑦𝑡+𝑗∞−1 + 𝐾𝑖𝑡+𝑗∞
∗ = 0 

which leads to the backward form: 

𝑦𝑡+𝑗∞ = −𝑖𝑛𝑣(𝐴
∗ 𝑇∗ + 𝐵∗)𝐶∗𝑦𝑡+𝑗∞−1 − 𝑖𝑛𝑣(𝐴

∗𝑇∗ + 𝐵∗)𝐾𝑖𝑡+𝑗∞
∗ = 

= 𝑇∗𝑦𝑡+𝑗∞−1 + 𝑄𝑖𝑡+𝑗∞
∗  

which can be backward propagated 

𝐴∗ 𝑇∗𝑦𝑡+𝑗∞−1 + 𝐴
∗𝑄𝑖𝑡+𝑗∞

∗ + 𝐵∗𝑦𝑡+𝑗∞−1 + 𝐶
∗𝑦𝑡+𝑗∞−2 +𝐾𝑖𝑡+𝑗∞−1

∗ = 0 

implying 

𝑦𝑡+𝑗∞−1 = 𝑇
∗𝑦𝑡+𝑗∞−2 + 𝑄𝑖𝑡+𝑗∞−1

∗ − 𝑖𝑛𝑣(𝐴∗𝑇∗ + 𝐵∗)𝐴∗𝑄𝑖𝑡+𝑗∞
∗  

𝑦𝑡+𝑗 = 𝑇
∗𝑦𝑡+𝑗−1 +∑ (−1)(𝑠−𝑗) (𝑖𝑛𝑣(𝐴∗𝑇∗ + 𝐵∗)𝐴∗)𝑠−𝑗 𝑄𝑖𝑡+𝑠

∗
𝑗∞

𝑠=𝑗
 

and so on until t. This provides a backward recursion that allows to solve, given 𝑖𝑡+𝑠
∗  and 𝜔, the 

forward path of all model variables.  

Please note that here we assume that the only exogenous process which is not white noise is 𝑖𝑡
∗, hence 

we can always consider 𝜀𝑡+𝑠 = 0. 

For illustration purposes we report here also the ABC and ABC* form of the NK model. 

Model with hybrid Phillips curve and Taylor rule in matrix notation 

[
−1 0 0
−1 0 −1
−𝛽𝑠𝑃 0 0

] [

𝜋𝑡.𝑡+1
𝜋𝑡.𝑡+1
𝑒

𝑦𝑡.𝑡+1

] + [
0 1 0
𝜏 0 1
1 0 −𝛾

] [

𝜋𝑡
𝜋𝑡
𝑒

𝑦𝑡

] + [
0 0 0
0 0 0

−(1 − 𝑠𝑃) 0 0
] [

𝜋𝑡−1
𝜋𝑡−1
𝑒

𝑦𝑡−1

] + [
0
1
0
] 𝑠𝑡 = 0 

Model with hybrid Phillips curve and ZLB in matrix notation 

 

[
0 0 0
0 0 −1
0 0 0

] [

𝜋𝑡.𝑡+1
𝜋𝑡.𝑡+1
𝑒

𝑦𝑡.𝑡+1

] + [
1 0 0
0 −1 1
1 −𝛽𝑠𝑃 −𝛾

] [

𝜋𝑡
𝜋𝑡
𝑒

𝑦𝑡
] + [

0 −1 0
0 0 0

−(1 − 𝑠𝑃) 0 0
] [

𝜋𝑡−1
𝜋𝑡−1
𝑒

𝑦𝑡−1

] + [
𝜔 0 0
0 −1 1
0 0 0

] [

𝑒𝑡
𝑖𝑡
∗

𝑠𝑡
]

= 0 

 

Alternative formulation. 

Expand the ABC* formulation augmented by the offline TR solution 

𝔸𝑦𝑡+1 +𝔹 𝑦𝑡 +  ℂ 𝑦𝑡−1 + 𝕁𝜀𝑡 = 0 

where 
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𝔸 = [
𝐴∗ 0
0 0

] 𝔹 = [
𝐵∗ 𝐾∗

0 𝐼
] ℂ = [

𝐶∗ 0
0 −𝑇

] 𝕁 = [
𝐽
−𝑅
] 

Where 𝐾∗ is a matrix of zeros except for a (-1) in the diagonal corresponding to the 𝑖𝑡 entry (i.e. for 

equation 𝑖𝑡 = 𝑖𝑡
∗). 

When 𝑖𝑡
∗ hits the lower bound, the augmented system switches to 

𝔸𝑦𝑡+1 +𝔹
∗ 𝑦𝑡 +  ℂ 𝑦𝑡−1 + 𝕁𝜀𝑡 +𝔻

∗ = 0 

𝔹∗ = [
𝐵∗ 0
0 𝐼

] ℂ = [
𝐶∗ 0
0 𝑇

] 𝕁 = [
𝐽
𝑅
] 

 

 

 

 

 


